Gas-shielded metal arc welding

Brief description
The welding installation consists of the welding power source, the shielding gas supply, the non-consumable tungsten electrode, and the welding torch. The shielding gas flows through the welding torch and the weld area. The welding torch is connected to the welding power source via a mains connection. The shielding gas is supplied to the weld area. The welding torch is the tool used for the welding process.

Areas of application
Mild and alloyed steels, stainless steels, and copper alloys. The shielding gas is the main source of the welding process. It is used to protect the weld area from atmospheric pollution.

Typical welding data
Shielding gas: Argon, Carbon dioxide, Mixtures of Argon and Carbon dioxide, Argon and Air.
Wire electrode: Ø 1.0 – 3.2 mm, welding current: 100 – 600 A, welding speed: up to 6 m/min.
Deposition rate: up to 5 kg/h.

Tungsten inert gas welding

Brief description
The welding installation consists of the welding power source, the shielding gas supply, the covered stick electrode, and the welding torch. The shielding gas flows through the welding torch and the weld area. The welding torch is connected to the welding power source via a mains connection. The shielding gas is supplied to the weld area. The welding torch is the tool used for the welding process.

Areas of application
Mild and alloyed steels, aluminium, copper, stainless steels and high-strength steels. The welding process is used for the welding of tubular and plate-like structures, e.g. in the construction of ships, aircraft, and railway vehicles.

Typical welding data
Shielding gas: Argon, Carbon dioxide, Mixtures of Argon and Carbon dioxide, Argon and Air.
Wire electrode: Ø 1.0 – 3.2 mm, welding current: 100 – 600 A, welding speed: up to 6 m/min.
Deposition rate: up to 5 kg/h.

Manual metal arc welding

Brief description
The heat source is an arc which burns between a consumable electrode (welding wire) and the workpiece. The arc melts the base material and the coating material, which is then fed into the arc. The heat of the arc melts the base material and the coating material, which is then fed into the arc. The heat of the arc melts the base material and the coating material, which is then fed into the arc. The heat of the arc melts the base material and the coating material, which is then fed into the arc. The heat of the arc melts the base material and the coating material, which is then fed into the arc. The heat of the arc melts the base material and the coating material, which is then fed into the arc. The heat of the arc melts the base material and the coating material, which is then fed into the arc.

Areas of application
Mild and alloyed steels, stainless steels, and copper alloys. The welding process is used for the welding of tubular and plate-like structures, e.g. in the construction of ships, aircraft, and railway vehicles.

Typical welding data
Shielding gas: Argon, Carbon dioxide, Mixtures of Argon and Carbon dioxide, Argon and Air.
Wire electrode: Ø 1.0 – 3.2 mm, welding current: 100 – 600 A, welding speed: up to 6 m/min.
Deposition rate: up to 5 kg/h.